On two-dimensional quantum gravity and quasiclassical integrable hierarchies
نویسنده
چکیده
The main results for the two-dimensional quantum gravity, conjectured from the matrix model or integrable approach, are presented in the form to be compared with the world-sheet or Liouville approach. In spherical limit the integrable side for minimal string theories is completely formulated using simple manipulations with two polynomials, based on residue formulas from quasiclassical hierarchies. Explicit computations for particular models are performed and certain delicate issues of nontrivial relations among them are discussed. They concern the connections between different theories, obtained as expansions of basically the same stringy solution to dispersionless KP hierarchy in different backgrounds, characterized by nonvanishing background values of different times, being the simplest known example of change of the quantum numbers of physical observables, when moving to a different point in the moduli space of the theory.
منابع مشابه
Dressing Operator Approach to Moyal Algebraic Deformation of Selfdual Gravity
Recently Strachan introduced a Moyal algebraic deformation of selfdual gravity, replacing a Poisson bracket of the Plebanski equation by a Moyal bracket. The dressing operator method in soliton theory can be extended to this Moyal algebraic deformation of selfdual gravity. Dressing operators are defined as Laurent series with coefficients in the Moyal (or star product) algebra, and turn out to ...
متن کاملNonlinear Integrable Systems
W algebras arise in the study of various nonlinear integrable systems such as: self-dual gravity, the KP and Toda hierarchies, their quasi-classical (or dispersionless) limit, etc. Twistor theory provides a geometric background for these algebras. Present state of these topics is overviewed. A few ideas on possible deformations of self-dual gravity (including quantum deformations) are presented.
متن کاملNonlinear Integrable Systems
W algebras arise in the study of various nonlinear integrable systems such as: self-dual gravity, the KP and Toda hierarchies, their quasi-classical (or dispersionless) limit, etc. Twistor theory provides a geometric background for these algebras. Present state of these topics is overviewed. A few ideas on possible deformations of self-dual gravity (including quantum deformations) are presented...
متن کاملFinite Euler Hierarchies and Integrable Universal Equations
Recent work on Euler hierarchies of field theory Lagrangians iteratively constructed from their successive equations of motion is briefly reviewed. On the one hand, a certain triality structure is described, relating arbitrary field theories, classical topological field theories – whose classical solutions span topological classes of manifolds – and reparametri-sation invariant theories – gener...
متن کاملIntegrable Models in Two-dimensional Dilaton Gravity
Recently, two-dimensional dilaton gravity (DG) models have been extensively investigated both from classical and quantum points of view because of their connection to string theory, dimensional reduced models, black holes, and gravitational collapse. (For short reviews and references see e.g. ) In this talk I would like to illustrate another important aspect of DG: its relation to integrable sy...
متن کامل